A solvable version of the Baer–Suzuki theorem
نویسندگان
چکیده
منابع مشابه
A Solvable Version of the Baer–suzuki Theorem
Suppose that G is a finite group and x ∈ G has prime order p ≥ 5. Then x is contained in the solvable radical of G, O∞(G), if (and only if) 〈x, xg〉 is solvable for all g ∈ G. If G is an almost simple group and x ∈ G has prime order p ≥ 5, then this implies that there exists g ∈ G such that 〈x, xg〉 is not solvable. In fact, this is also true when p = 3 with very few exceptions, which are describ...
متن کاملA More General Version of the Costa Theorem
In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملFreiman's theorem for solvable groups
Freiman’s theorem asserts, roughly speaking, if that a finite set in a torsion-free abelian group has small doubling, then it can be efficiently contained in (or controlled by) a generalised arithmetic progression. This was generalised by Green and Ruzsa to arbitrary abelian groups, where the controlling object is now a coset progression. We extend these results further to solvable groups of bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2010
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-2010-04932-3